Combining Trajectory Optimization, Supervised Machine Learning, and Model Structure for Mitigating the Curse of Dimensionality in the Control of Bipedal Robots
نویسندگان
چکیده
To overcome the obstructions imposed by high-dimensional bipedal models, we embed a stable walking motion in an attractive low-dimensional surface of the system’s state space. The process begins with trajectory optimization to design an open-loop periodic walking motion of the high-dimensional model and then adding to this solution, a carefully selected set of additional open-loop trajectories of the model that steer toward the nominal motion. A drawback of trajectories is that they provide little information on how to respond to a disturbance. To address this shortcoming, Supervised Machine Learning is used to extract a low-dimensional state-variable realization of the openloop trajectories. The periodic orbit is now an attractor of the low-dimensional state-variable model but is not attractive in the full-order system. We then use the special structure of mechanical models associated with bipedal robots to embed the low-dimensional model in the original model in such a manner that the desired walking motions are locally exponentially stable. The design procedure is first developed for ordinary differential equations and illustrated on a simple model. The methods are subsequently extended to a class of hybrid models and then realized experimentally on an Atrias-series 3D bipedal robot.
منابع مشابه
Robust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length
This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...
متن کاملDelay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots
This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances. On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...
متن کاملTrajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV
This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملHigh Dimensional Reachability Analysis: Addressing the Curse of Dimensionality in Formal Verification
High Dimensional Reachability Analysis: Addressing the Curse of Dimensionality in Formal Verification by Mo Chen Doctor of Philosophy in Engineering Electrical Engineering and Computer Sciences University of California, Berkeley Professor Claire Tomlin, Chair Automation is becoming pervasive in everyday life, and many automated systems, such as unmanned aerial systems, autonomous cars, and many...
متن کامل